
ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4360 245

Analysis and Comparison of Concurrency

Control Techniques

Sonal Kanungo
1
, Morena Rustom. D

2

Smt.Z.S.Patel College Of Computer, Application,Jakat Naka, Surat1

Department Of Computer Science, Veer Narmad South Gujarat University, Surat.2

Abstract: In a shared database system when several transactions are executed simultaneously, the consistency of

database should be maintained. The techniques to ensure this consistency are concurrency control techniques. All

concurrency-control schemes are based on the serializability property. The serializability properties requires that the

data is accessed in a mutually exclusive manner; that means, while one transaction is accessing a data item no other

transaction can modify that data item.

In this paper we had discussed various concurrency techniques, their advantages and disadvantages and making
comparison of optimistic, pessimistic and multiversion techniques. We have simulated the current environment and

have analysis the performance of each of these methods.

Keywords: Concurrency, Locking, Serializability

1. INTRODUCTION

When a transaction takes place the database state is
changed. In any individual transaction, which is running

in isolation, is assumed to be correct. While in shared

database several transactions are executes concurrently in

the database, the isolation property may no longer be

preserved. To ensure that the system must control the

interaction among the concurrent transactions; this control

is achieved through one of a variety of mechanisms called

concurrency-control schemes.[1]

1.1 Concurrency control Techniques

The serializable transactions are executed one at a time, or

serially, rather than concurrently. [4] All schemes we are
going to discuss here are serializable. Serializability, or

isolation, is the standard for ensuring atomicity. [1] In this

paper we intent to compare the techniques

1.1.1 Lock-Based Protocols

1.1.2 Timestamp-Based Protocols

1.1.3 Validation – Based Protocols

1.1.4 Multiversion Schemes

1.1.1 Lock-Based Protocols

In Lock Based Protocols the Lock mechanism is used for

concurrent access to a data item. Permission is given to

access a data item only if it is currently holding a lock on

that item. Data items can be locked in two modes; either
exclusive (X) mode or shared mode (S). [1] For

transactions that can both read and write from the data

item X, exclusive-mode lock is given. For transactions

that can read, but cannot write on item S, shared-mode

lock is given to data item. Transaction can proceed only

after request is granted. [11]

A transaction may be granted a lock on an item if the

requested lock is compatible with locks already held on

the item by the other transactions. N number of

transactions can hold shared locks (S) on an item. But if

any transaction holds an exclusive lock (X) on the item,
no other transaction may hold any lock on that item. In

this condition, a lock cannot be granted and the requesting

transaction has to wait until all incompatible locks held by
other transactions are released. The lock is then granted.

[1]

1.1.2 The Two-Phase Locking Protocol

Transaction can always commit by not violating the

serializability property. If obtaining and releasing locks

are done improperly, it will leads to inconsistency and

deadlocks can occur. For transactions to be serial, all

access to data must be serialized with respect to access by

other transactions.

To ensure that the conflicting operations of the multiple

transactions are executed in the same order, a restriction
is imposed. Any transaction is not allowed to obtain new

locks till it had released a lock. This restriction is called

Two Phase Locking. The first phase is known as the

growing phase, in which a transaction acquires all the

locks it needs. The second phase is known as the

shrinking phase, where the process releases the locks. [1]

If a process fails to acquire all the locks during the first

phase, then it is obligated to release all of them, wait, and

then start over. [12] This protocol ensures conflict-

serializable schedules. [1] The optimality of two-phase

locking implies that, in absence of any information about

the transactions or the database, all locking protocols
must be two-phase. [14]

Further the Two Phase Locking can be of two types:

1.1.2.1 Strict two-phase locking: It is necessary to hold

write locks until after a transaction commits or aborts to

ensure serializiblity. As per two-phase locking (2PL)

rules, to ensure serializability the read locks may be

released earlier. This implies that the read locks can be

released when the transaction terminates (i.e., when the

scheduler receives the transaction‟s commit or abort), but

write locks must be held until after the transaction

commits or aborts. [6] Transaction must hold all its
exclusive locks till it commits or aborts and no cascading

rollback takes place.

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4360 246

1.1.2.2 Rigorous two-phase locking: It is even stricter;

all locks (S or X) are held until commit/ abort takes place

and no cascading rollback happens. Transactions can be
serialized in the order in which they commit. Deadlocks

and Starvations are main drawbacks of these protocols.

1.1.3 Timestamp-Based Protocols

For keeping information about the precise order of arrival

of execution, requests cannot be taken into account by

any locking algorithm. In contrast, algorithms are

implemented by queues or timestamps. [14] In this

algorithm, the timestamp is given to a transaction when it

begins. [14] The timestamp has to be unique with respect

to the timestamps of other transactions. Here, W-

timestamp is the largest time-stamp of any transaction
that executed write successfully and R-timestamp is the

largest time-stamp of any transaction that executed read

successfully are kept. The protocol manages concurrent

execution such that the time-stamps determine the

serializability order. [1]

When a process tries to access a data, the data's read and

write timestamps will be older than the current

transaction's. If this is not the case, and the ordering is

incorrect, this implies that a transaction that started later

than the current one accessed the data and committed. In

this case the current transaction is too late and has to

abort. The rule here is that the lower numbered
transaction always goes first read it and which committed

transaction last wrote it. [12]

The timestamp ordering protocol ensures that any

conflicting read and write operations are executed in

timestamp order. Timestamp protocol ensures freedom

from deadlock as no transaction ever waits. But the

schedule may not be cascade-free, and lead to non-

recoverable situation. [1]

1.1.4 Validation-Based Protocols

This is also called as optimistic concurrency control
since transaction executes fully in the hope that all will go

well during validation. [1] The methods used are

“optimistic” in the sense that they rely mainly on

transaction backup as a control mechanism, “hoping” that

conflicts between transactions will not occur [6]. These

methods are “optimistic” in the sense that they rely for

efficiency on the hope that conflicts between transactions

will not occur. [5]

Validation based protocols works under assumption that

the read and write conflicts among transactions occurs
rarely. This allows uncontrolled access to shared data

objects during transaction processing. Before a

transaction commits, the DBMS has to validate that no

conflict had occurred. Conflict resolution mainly leads to

transaction abort. [5] Where a majority of transactions are

read-only transactions, the rate of conflicts among

transactions may be low.

This concurrency-control scheme imposes overhead of

code execution and possible delay of transactions.

The execution of transaction is done in three phases.

These phases depend on whether it is a read-only or an

update transaction. The phases are as follows:

In Read and execution phase, the transaction writes only

to temporary local variables. It performs all write

operations on temporary local variables, without update.
In Validation phase, the transaction performs a

“validation test” to determine whether local variables are

written without violating serializability.

In Write phase, in case the transactions are validated, the

updates are applied to the database; otherwise the

transaction is rolled back. [1]

Each transaction goes through these three phases and in

that order. In Optimistic scheme, we do not lock the

records and therefore no deadlocks occur. [19]

1.1.4 Multi version Schemes

There are two ways to ensure serializability, either by
delaying an operation or aborting the transaction that

issued the operation. For example, a read operation may

be delayed because the appropriate value has not been

written yet; or it may be rejected because the value that it

was supposed to read has already been overwritten. These

difficulties could be avoided if old copies of each data

item were kept in a system. [1]

In a multiversion scheme, each write on any data item,

say X, produces a new copy (or version) of X. For each

read on X, it selects one of the versions of X to be read.

Since writes do not overwrite each other and since reads

can read any version, it has more flexibility in controlling
the order of reads and writes. This approach maintains a

number of versions of a data item and allocates the right

version to a read operation of a transaction. [21]

In a Multiversion scheme, a read operation is never

rejected. However, this scheme needs significantly more

storage (RAM and disk) for maintaining multiple

versions. In order to check unlimited growth of versions,

a cleanup action is run when some criteria is satisfied.

[11]

Multiversion Scheme is often used along with Time

stamping and Two-phase locking.

1.1.4 .1 Multiversion Timestamp Ordering

The timestamps are used to label the versions. When a

read operation is issued, an appropriate version of data

based on the timestamp of the transaction is selected, and

the value of the selected version is returned. Reads never

have to wait as an appropriate version is returned

immediately. [1]

When a transaction issues a write step on some entity X,

we might choose not to overwrite the old value of X by

the new one, but to keep both versions. If subsequently

another transaction reads X, we have the option of
supplying to it either version, whichever serves

serializability best, as that is the final accepted action.

[18] In this scheme, each data item X has a sequence of

versions <X1, X2,...., Xm>.

Each version data contains three data fields: Content is

the value of version Xk.W-timestamp (Xk) is timestamp

of the transaction that created (wrote) version Xk., R-

timestamp(Xk) is largest timestamp of a transaction that

successfully read version Xk[18]

Transaction reads the most recent version that comes

before it in time. If the transaction attempts to write a

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4360 247

version that some other transaction would have already

read, then that write cannot succeed. [1]

1.1.4.2 Multiversion Two-Phase Locking
The multiversion two-phase locking protocol attempts to

combine the advantages of multiversion concurrency

control with the advantages of two-phase locking. This

protocol differentiates between read-only transactions and

updated transactions.[18]

Update transactions acquire read and write locks and hold

all locks up to the end of the transaction; that is, the

update transactions follow rigorous two-phase locking.

[15] In this locking mechanism, two versions for each

item X are kept; one version must always have been

written by some committed transaction. The second
version X is created when a transaction acquires a write

lock on the item. Other transactions can continue to read

the committed version of X while the transaction is

holding the write lock. Transaction can write the value of

X as needed without affecting the value of the committed

version X. However, once a transaction is ready to

commit, before it commits, it must obtain a certify lock on

all items that it currently holds write locks on. The certify

lock is not compatible with read locks. Hence the

transaction may have to delay it‟s commit until all it‟s

write-locked items are released by any reading

transactions in order to obtain the certify locks. [8]
The Update transactions perform rigorous two-phase

locking and they hold all locks until the end of the

transaction. Therefore according to their commit order

they can be serialized.

2. RELATED WORK

Database concurrency control is an active area of research

and has resulted in the development of many protocols for

achieving serializability. The basic mechanisms used by

the protocols are of locking, timestamps, and multiple

versions. [5, 7, 16]
Korth[1] This work discuss various concurrency-control

schemes. All these schemes follow serializability.

Conflicts are handled either by delaying or aborting the

transactions. The most common schemes are of locking

protocols, timestamp, validation techniques, and

multiversion schemes.

Bharat Bhargava[2] (Concurrency Control in

Database Systems) This work presented several classes

of concurrency control approaches and presented a short

survey of ideas that have been used for designing flexible

concurrency control algorithms.
H.T. Kung and John T. Robinson [5] (On Optimistic

Methods for Concurrency Control) In this paper, two

families of non-locking concurrency controls are

presented. The methods used are “optimistic” in the sense

that they rely mainly on transaction backup as a control

mechanism, “hoping” that conflicts between transactions

will not occur. Most important outcome of this paper is;

„locking may be necessary only in the worst case‟.

ALEXANDER THOMASIAN [7] (Concurrency

Control: Methods, Performance, and Analysis) In this

paper, the performance of the locking model is analyzed.

This article is to provide ideas of factors leading to

performance degradation. It also summarized the

conclusions of previous simulation and analytic studies

regarding the relative performance of concurrency control
methods and survey methods applicable to the analysis of

standard locking, restart-oriented locking methods, and

optimistic concurrency control.

BERNSTEIN, P. A., AND GOODMAN [22]

(Multiversion Concurrency Control-Theory and

Algorithms) In this paper they extended concurrency

control theory for the translation aspect of multiversion

databases. The main idea is one-copy serializability. Any

execution of transactions in a multiversion database is

one-copy serializable. They applied the theory to three

multiversion concurrency control algorithms wherein one
algorithm uses timestamps, one uses locking, and one

combines locking with timestamps.

CHRISTOS H. PAPADIMITRIOU, PARIS C.

KANELLAKIS [19] (On Concurrency Control by

Multiple Versions, A Theorem in Database

Concurrency Control). This paper examined the problem

of concurrency control when the database management

system supports multiple versions of the data. They

characterized the limit of the parallelism achievable by the

multiversion approach and demonstrated the resulting

space-parallelism trade-off.

3. METHODOLOGY

We simulated concurrency control environment using

C++. A simple data structure was used for storing data

randomly.We have generated transactions randomly.

Every transaction had any of two operations, either Read

or Write, which are also generated randomly. When a

transaction was entered in system it had applied read or

write on some data, concurrently other transactions are

also running in system that also wants to apply read/ write

on some data. The methodology for these protocols works

as is described below.

 3.1. Two phase Locking
When a Transaction‟s operation get executed it first

checks whether it has a lock or no-lock on data. In case

no-lock is found on data, a lock is applied to data. This

lock can be shared (read S) or exclusive (write X). If both

the operations gets lock (S,S) or (S,X) or (X,X) or (X,S),

the transaction goes to process, where reading or writing

on data takes place and unlocking is performed. Else, the

operation goes to wait which means any of the two or both

operations have found lock on that data.

In Process (Unlock) if timeout takes place it goes to
rollback. In few cases the cascading Rollback is also

found. This implies that after rollbacked by one

transaction, the other transaction that apply operation on

the same data will also be rollbacked or else transaction

will commit.

We ran these transactions 100 times where there are 10

operations in each run ,We found that only 180

transactions are committed while others are either in wait

or in rollback. We found that few transactions were

committed and more number of waits was generated. This

protocol is free from conflict serializiblity. However, we

found overheads of lock.

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4360 248

3.2. Time Stamping
We used System clock for two timestamps;

ReadTimestamp and WriteTimestamp for each data. When
transaction is entered in system timestamp is given to

transaction. When transaction wants to read some data the

transactiontimestamp must be greater than last Write‟s

timestamp, then only read will success and R=T(last

Readtime stamp will assign to Transaction‟s timestamp),

else rollback takes place implying that other operation is

assigned to that data.

When transaction wants to write on some data,

transactions timestamp should be greater than last Read

and Writestamp then only write will succeed and

W=T(last write timestamp is assign to transaction‟s
timestamp) Else, rollback takes place implying that other

operation is assigned to that data. If the Transaction‟s

timestamp is less than last Write time stamp, transaction is

ignored. (Thoms‟ write).

We ran these transactions 100 times where there are 10

operations in each run ,We found that only 288

transactions are committed while others are rollbacked.

We did not find any wait here, but the rollbacks took place

in a large number. If T is aborted and rolled back, any

transaction T1 that may have used a value written by T

must also be rolled back. Similarly, any transaction T2 that

may have used a value written by T1 must also be rolled
back, and so on. This effect is known as cascading

rollback. This protocol is free from conflict serializiblity,

but lot of cascading rollbacks are generated. Overheads of

ReadTimestamp and WriteTimestamp are also found.

3.3 Validation Based (Optimistic)

The techniques are called "optimistic" because they

assume that little interference will occur and hence that

there is no need to do checking during transaction

execution. This Protocol is best when there are Read only

transactions and when conflicts are not found. Here we

allow all transactions to perform locally than we check
whether conflicts are there (thru Validation). In case the

conflicts are found, we took time stamping for both

operations. If the first operation is its end Timestamp it

will succeed. Else it will be roll-backed. In case the second

operation is its Start timestamp and the first operation is its

End timestamp, then it will succeed or else rollback.

We ran these transactions 100 times where there are 10

operations in each run . We found that only 333

transactions are committed which are mostly Read only.

We also found that if there are no conflicts, commits are

more. However if conflicts occurs, it generates a lot of
rollbacks. In the optimistic concurrency control we do all

the checks at once. Hence, we allow the transactions to

execute with a minimum of overhead until the validation

phase is reached. If there is a little interference among

transactions, most will be validated successfully.

However, if there are several interferences, many

transactions that execute to completion will have their

results discarded and must be restarted later. Under these

circumstances, optimistic techniques do not work well.

3.4. Multiversion
In multiversion we generate new data with every

successful write operation. Here we examined that for

write operation if timestamp of given write operation is

greater that timestamp of last write, we create new data

and if it is equal to last write, we overwrite data. That
means with every successful write we generated new

version of data. Read operation is always success, because

it always found data.

We ran these transactions 100 times where there are 10

operations in each run , we found 666 transactions are

committed while others are in Rollback, We found more

commit here and less Rollback. On the flip side,

generation of new data with every successful write needs

more space. Conflicts between transactions are resolved

through rollbacks, rather than waits which are be

expensive.
This emerges as the best protocol for large database.

4. COMPARISON

4.1. Performance Comparison

Locking protocols are good for update-intensive

applications while for read only optimistic protocols are

good. This is because there are no unnecessary overheads

of locking of read-only transactions and will give good

results. The performance is degraded with standard

locking because blocking is done if transactions are not

compatible with each other, whereas transaction restarts to

resolve deadlocks have a secondary effect on performance
which further leads to thrashing. [7] Timestamps are used

to decide the older-younger relationships. Timestamp can

give better results if some available information about the

transactions or the database can be used for increasing

concurrency. [11]

In a locking approach, having them wait at certain points,

while in an optimistic approach backing them up controls

the transactions. In multiversion scheme a read operation

is never rejected, while large parts of the database reside

on secondary storage. The overhead of keeping

multiversion of data needs large storage space. For large
database multiversion is considered to be best.

4.2. Serializability

Locking ensures serializability for any types of

transactions whether it is Read only or Update-intensive

which could operate concurrently with a given

transaction. It is good for update-intensive applications

because it is safe [6]. The timestamp-ordering protocol

ensures conflict serializability. This is because conflicting

operations are processed in timestamp order. [1]

Transaction can read the same item at different times,

conflict-free. [6]
The Optimistic Concurrency Control works on

assumption that conflicts between transactions are rare. It

does not require locking. Transaction is executed only

after the validation. That is because the serializability

order is not pre-decided and relatively less transactions

will have to be rolled back if there are mostly read only

transaction.

The multiversion two-phase locking protocol attempts to

combine the advantages of multiversion concurrency

control with the advantages of two-phase locking thereby

providing serializable schedules. [22]

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4360 249

4.3. Rollback and Deadlock handling

4.3.1 Locking Protocols

The deadlock prevention or detection in 2PL and other
locking techniques is much more complex and costly.

Storage overhead is increased because of deadlock [6]

with locking and the blocked transactions. Processing of

these overheads is high as keeping track of locks and the

queue waiting for data access is difficult.

The deadlocks are found in most locking protocols.

Starvation is also possible if concurrency control

manager is badly designed. For example: A transaction

may be waiting for an X-lock on an item, while a

sequence of other transactions requests and are granted an

S-lock on the same item. [1] The same transaction is
repeatedly rolled back due to deadlocks. [9]

This protocol is inefficient because of locking overhead,

possibility of deadlock and waits for locked data. [5]

Two-phase locking does not ensure freedom from

deadlocks. Cascading roll-back is possible under two-

phase locking. [15] To allow a transaction to abort itself

when mistakes occur, locks cannot be released until the

end of the transaction. This may again significantly lower

concurrency. [4]

Locking is done even for read-only transactions, which

does not affect the integrity of the data. [5] If the locking

protocol is not deadlock-free, deadlock detection must be
considered to be part of lock maintenance overhead.

There are no general-purpose deadlock-free locking

protocols for databases that always provide high

concurrency. [5]

4.3.2 Timestamp protocol
Timestamp protocol ensures freedom from deadlocks, as

no transaction has to wait for other. However, there is a

possibility of starvation of long transactions if a sequence

of conflicting short transactions causes repeated restarting

of the long transaction. In such cases cascading rollbacks

are unavoidable. [17] However, this protocol enhances
concurrency over two phased locking because the

transactions do not block each other needlessly. It is

different from locking, because the blocked transaction

aborts rather than waits for access.

4.3.3 Optimistic Protocol

Optimistic protocol is different from locking, because they

abort blocked transaction rather than sending them for

waits. [5] The performance degradation occurs with

standard optimistic approach due to rollback when a

conflict happens. In an optimistic approach, the major

difficulty is starvation. The validation scheme

automatically guards against cascading rollbacks, since the

actual writes take place only after the transaction issuing
the write has committed.

 4.3.4 Multiversion

In multiversion two phase locking, to detect deadlocks, the

algorithm can use a directed blocking graph whose nodes

are the transactions, and there is a deadlock if the graph

has a cycle. To resolve deadlocks caused by certify-locks,

the system should force one or more transactions to give

up enough of their certify-locks to break the deadlock;

these transactions can try later to get these locks back. To

break deadlocks the system must abort one or more

transactions, cascading aborts are also possible if the

algorithm allows transactions to read uncertified versions.
[22]

5. RESULT AND ANALYSIS

Transactions are generated randomly on random data

where Read and write operations are also randomly

performed on data . 1000 transactions are generated on

100 individual runs where each run where each run have

10 transactions, on which we have calculated results for

total number of committed transaction, rollback

transitions, and wait transaction for 2pl, Timestamp,

Optimistic and Multiversion.

Average of transactions

 Figure 1 Comparison of all Techniques

Table 1
Average number of transaction for different methods of concurrency control

 Number of runs

for Transactions

Transaction

in each run

Committed

Transaction

Rollback

Transaction

Wait

Transaction

2PL 100 10 180 370 550

Timestamp 100 10 288 712 -

Optimistic 100 10 333 677 -

Multiversion 100 10 666 334 -

0
200
400
600
800

1000
1200

Transactions

Committed
Transaction

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4360 250

Figure 2 Average number of Commit transactions for
different concurrency control methods

Figure.3.Average number of Rollback transactions for
different concurrency control methods

5. CONCLUSION

Locking Protocols follow serializability irrespective of

type of transactions; read or update-intensive, which

could run concurrently. They are good for update-

intensive applications but there are locking overhead and

they are not free from deadlocks. Also, unnecessary

locking for read transactions takes place.
In Time stamp protocols transactions are conflict-free, it

gives better concurrency over phased locking because

transactions do not block each other needlessly but suffers

with large amount of rollbacks. If a transaction is aborted,

it is restarted with a new timestamp. This can result in a

cyclic restart where a transaction can repeatedly restart

and abort without ever completing. Cascading rollback is

also degrading concurrency. Another disadvantage is that

it has storage overhead for maintaining timestamps as two

timestamps must be kept for every data object.

In Optimistic protocol, commit is done only after

validation phase because if conflicts occurs between
transactions and if not prevented in frequent-update

systems it may abort more transactions than either

previous method because checks timestamps later.

In some cases we need either to have additional

information about the transactions or to impose some

structure or ordering on the set of data items in the

database. In the absence of such information, two-phase

locking is necessary for conflict serializability.

Multiversion follows the approach for maintaining a

number of versions of a data item and allocates the right

version to a read operation of a transaction. Thus unlike
other techniques a read operation in this mechanism is

never rejected. Read is normally rejected because the

value it was supposed to read is already overwritten. Here

reading old copies of each data item can avoid rejections.

Read can be given an old value of a data item, even

though read is always possible. As Multiversion follows

serializability in one hand it is also possible to read all
versions that are all updated values therefore multiversion

is best among all schemes.

REFERENCES
1. Henry F. Korth, Abraham Silberchatz, S. Sudarshan :

Concurrency Control: Database system Concepts (Forth Edition), Page : 591 -617

2. Bharat Bhargava : Concurrency Control in Database Systems :

IEEE Transactions on Knowledge and Data Engineering, Vol. 11,

NO. 1, January/ February 1999

3. Data Concurrency and Consistency Oracle®DatabaseConcepts

10g Release 2 (10.2)

4. NASER S. BARGHOUTI AND GAIL E. KAISER : Concurrency

Control in Advanced Database Applications, ACM Computing

Surveys, Vol 23, No 3, September 1991

5. H.T. Kung and John T. Robinson : On Optimistic Methods for

Concurrency Control, ACM Transactions on Database Systems,

Vol. 6, No. 2, June 1981, Pages 213-226.

6. Patricia Geschwent : A Survey of Traditional and Practical

Concurrency Control in Relational

DatabaseManagementSystems,TECHNICALREPORT:MU-

SEAS-CSA-1994-006,Miami University

7. ALEXANDER THOMASIAN : Concurrency Control : Methods,

Performance, and Analysis ACM Computing Surveys, Vol. 30,

No. 1, March 1998

8. Ramez Elmasri and Shamkant B. Navathe : Concurrency control

techniques, Fundamental of database system ,page 575-596

9. MOHAN, DONALD FUSSELL, ZVI M. KEDEM,AND

ABRAHAM SILBERSCHATZ : Lock Conversion in Non-Two-

Phase Locking Protocols, IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. SE-11, NO. 1, JANUARY 1985

0
200
400
600
800

1000
1200

Transactions

Committed
Transaction

0
200
400
600
800

1000
1200

Transactions

Rollback
Transaction

0

500

1000

1500

Transaction
s

Waiting
Transaction

Figure 4.Average number of Wait transactions for different concurrency control methods

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4360 251

10. Thanasis Hadzilacos‟ and Christos H. Papadimitriou : CONTROL

ALGORITHMIC ASPECTS OF MULTIVERSION

CONCURRENCY, ACM Transactions on Database Systems, Vol.

9, No. 1, March 1984, Pages 89-99

11. Joe Hellerstein : Concurrency Control, Locking, Optimistic,

Degrees of Consistency Advanced Topics in Computer Systems

,Spring 2008 UC Berkeley

12. Paul Krzyzanowski : Lectures on distributed systems Concurrency

Control, Rutgers University – CS 417: Distributed Systems V3.3

©1999-2009

13. MOHAN, DONALD FUS SELL, ZVI M. KEDEM AND

ABRAHAM SILBERSCHATZ : Lock Conversion in Non-Two-

Phase Locking Protocols , IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. SE-11, NO. 1, JANUARY 1985

14. CHRISTOS H. PAPADIMITRIOU : A Theorem in Database

Concurrency Control, Journal of the .Association for Computing

Machinery, Vol. 29, No. 4, October 1982, Page 998-1006

15. MEICHUN HSU and ARVOIA CHAN : Partitioned Two-Phase

Locking,ACM Transactions on Database Systems, Vol. 11, No. 4,

December 1966, Pages 431-446.

16. PARTHA DASGUPTA , ZVI M. KEDEM : The Five Color
Concurrency Control Protocol: Non-Two-Phase Locking in General

17. Databases, ACM Transactions on Database Systems, Vol. 15, No.

2, June 1990, Pages 281-307

18. Pei-Jyun Leu,Bharat Bhargava: MULTIDIMENSIONAL

TIMESTAMP PROTOCOLS FOR CONCURRENCY CONTROL

l,CSD-TR-521,revised Oct. 1986

19. BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN :

Concurrency Control and Recovery in Database Systems.

Addison-Wesley, Reading, Mass., 1987

20. CHRISTOS H. PAPADIMITRIOU ,PARIS C. KANELLAKIS :

On Concurrency Control by Multiple Versions, ACM Transactions

on Database Systems, Vol. 9, No. 1,March 1984, Pages 89-99.

21. HENRY F. KORTH : Locking Primitives in a Database System,

Journal of the Association for Computing Machinery, Vol 30, No

1, January 1983, pp 55-79

22. MICHAEL J. CAREY and WALEED A. MUHANNA : The

Performance of Multiversion Concurrency Control Algorithms,

ACM Transactions on Computer Systems, Vol. 4, No. 4,

November 1986, Pages 338-378.

23. PHILIP A. BERNSTEIN and NATHAN GOODMAN :

Multiversion Concurrency Control-Theory and Algorithms ACM Transactions on

Database Systems, Vol. 8, No. 4, December 1983, Pages 465-483

	Abstract: In a shared database system when several transactions are executed simultaneously, the consistency of database should be maintained. The techniques to ensure this consistency are concurrency control techniques. All concurrency-control scheme...
	Henry F. Korth, Abraham Silberchatz, S. Sudarshan : Concurrency Control: Database system Concepts (Forth Edition), Page : 591 -617
	Bharat Bhargava : Concurrency Control in Database Systems : IEEE Transactions on Knowledge and Data Engineering, Vol. 11, NO. 1, January/ February 1999
	Data Concurrency and Consistency Oracle®DatabaseConcepts 10g Release 2 (10.2)
	NASER S. BARGHOUTI AND GAIL E. KAISER : Concurrency Control in Advanced Database Applications, ACM Computing Surveys, Vol 23, No 3, September 1991
	H.T. Kung and John T. Robinson : On Optimistic Methods for Concurrency Control, ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981, Pages 213-226.
	Patricia Geschwent : A Survey of Traditional and Practical Concurrency Control in Relational DatabaseManagementSystems,TECHNICALREPORT:MU-SEAS-CSA-1994-006,Miami University
	ALEXANDER THOMASIAN : Concurrency Control : Methods, Performance, and Analysis ACM Computing Surveys, Vol. 30, No. 1, March 1998
	Ramez Elmasri and Shamkant B. Navathe : Concurrency control techniques, Fundamental of database system ,page 575-596
	MOHAN, DONALD FUSSELL, ZVI M. KEDEM,AND ABRAHAM SILBERSCHATZ : Lock Conversion in Non-Two-Phase Locking Protocols, IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 1, JANUARY 1985
	Thanasis Hadzilacos’ and Christos H. Papadimitriou : CONTROL ALGORITHMIC ASPECTS OF MULTIVERSION CONCURRENCY, ACM Transactions on Database Systems, Vol. 9, No. 1, March 1984, Pages 89-99
	Joe Hellerstein : Concurrency Control, Locking, Optimistic, Degrees of Consistency Advanced Topics in Computer Systems ,Spring 2008 UC Berkeley
	Paul Krzyzanowski : Lectures on distributed systems Concurrency Control, Rutgers University – CS 417: Distributed Systems V3.3 ©1999-2009
	MOHAN, DONALD FUS SELL, ZVI M. KEDEM AND ABRAHAM SILBERSCHATZ : Lock Conversion in Non-Two-Phase Locking Protocols , IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 1, JANUARY 1985
	CHRISTOS H. PAPADIMITRIOU : A Theorem in Database Concurrency Control, Journal of the .Association for Computing Machinery, Vol. 29, No. 4, October 1982, Page 998-1006
	MEICHUN HSU and ARVOIA CHAN : Partitioned Two-Phase Locking,ACM Transactions on Database Systems, Vol. 11, No. 4, December 1966, Pages 431-446.
	PARTHA DASGUPTA , ZVI M. KEDEM : The Five Color Concurrency Control Protocol: Non-Two-Phase Locking in General
	Databases, ACM Transactions on Database Systems, Vol. 15, No. 2, June 1990, Pages 281-307
	Pei-Jyun Leu,Bharat Bhargava: MULTIDIMENSIONAL TIMESTAMP PROTOCOLS FOR CONCURRENCY CONTROL l,CSD-TR-521,revised Oct. 1986
	BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN : Concurrency Control and Recovery in Database Systems. Addison-Wesley, Reading, Mass., 1987
	CHRISTOS H. PAPADIMITRIOU ,PARIS C. KANELLAKIS : On Concurrency Control by Multiple Versions, ACM Transactions on Database Systems, Vol. 9, No. 1,March 1984, Pages 89-99.
	HENRY F. KORTH : Locking Primitives in a Database System, Journal of the Association for Computing Machinery, Vol 30, No 1, January 1983, pp 55-79
	MICHAEL J. CAREY and WALEED A. MUHANNA : The Performance of Multiversion Concurrency Control Algorithms, ACM Transactions on Computer Systems, Vol. 4, No. 4, November 1986, Pages 338-378.
	PHILIP A. BERNSTEIN and NATHAN GOODMAN : Multiversion Concurrency Control-Theory and Algorithms ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983, Pages 465-483

